PICOSCOPE® 9400 SERIES

5 & 16 GHz Sampler Extended Real Time Oscilloscopes


주요사양 :

  • SXRTO (sampler-extended real-time oscilloscope)
  • 9404-16 and 9402-16: 16 GHz bandwidth, 22 ps transition time and 2.5 TS/s (0.4 ps resolution) random equivalent-time sampling
  • 9404-05 and 9402-05: 5 GHz bandwidth, 70 ps transition time and 1 TS/s (1 ps resolution) random equivalent-time sampling
  • Pulse, eye and mask testing down to 45 ps and up to 11 Gb/s
  • 12-bit 500 MS/s ADCs
  • Intuitive and configurable touch-compatible Windows user interface
  • Comprehensive built-in measurements, zooms, data masks and histograms
  • ±800 mV full-scale input range into 50 Ω
  • 10 mV/div to 0.25 V/div digital gain ranges
  • Up to 250 kS trace length, shared between channels
  • Optional clock recovery trigger on all models – 5 or 8 Gb/s
  • Recovered clock and data outputs






  • 아래의 table에서 PICOSCOPE® 9400 SERIES 의 모델을 확인하세요.
    For all input channels, waveform memories, or functions
    Vertical factor: 0.01 to 100
    Vertical position: ±800 divisions maximum of zoomed waveform
      PicoScope
    9404-05
    PicoScope
    9402-05
    PicoScope
    9404-16
    PicoScope
    9402-16
    Vertical
    Number of input channels 4 2 4 2
      All channels are identical and digitized simultaneously.
    Analog bandwidth (–3 dB)[1] Full: DC to 5 GHz Full: DC to 16 GHz
    Middle: DC to 450 MHz N/A Middle: DC to 450 MHz N/A
    Narrow: DC to 100 MHz DC to 450 MHz Narrow: DC to 100 MHz DC to 450 MHz
    Passband flatness Full: ±1 dB to 3 GHz Full: ±1 dB to 5 GHz
    Calculated rise time (tR), typical Calculated from the bandwidth.
    10% to 90%: calculated from tR = 0.35/BW
    20% to 80%: calculated from tR = 0.25/BW
    Full: 10% to 90%: ≤ 70 ps, 20% to 80%: ≤ 50 ps Full: 10% to 90%: ≤ 21.9 ps, 20% to 80%: ≤ 15.6 ps
    Middle: 10% to 90%: ≤ 780 ps, 20% to 80%: ≤ 560 ps N/A 10% to 90%: ≤ 780 ps
    20% to 80%: ≤ 560 ps
    N/A
    Narrow: 10% to 90%: ≤ 3.5 ns. 20% to 80%: ≤ 2.5 ns 10% to 90%: ≤ 780 ps
    20% to 80%: ≤ 560 ps
    10% to 90%: ≤ 3.5 ns
    20% to 80%: ≤ 2.5 ns
    10% to 90%: ≤ 780 ps
    20% to 80%: ≤ 560 ps
    Step response, typical

    Full bandwidth

    Overshoot: < 8%
    Ringing:
    ±6% to 3 ns
    ±4% from 3 ns to 10 ns
    ±3% from 10 ns to 100 ns
    ±2% from 100 ns to 400 ns
    ±1% above 400 ns

    Middle bandwidth

    Overshoot: < 6%
    Ringing:
    ±4% to 10 ns
    ±3% from 10 ns to 100 ns
    ±2% from 100 ns to 400 ns
    ±1% above 400 ns

    Narrow bandwidth

    Overshoot: < 5%
    Ringing:
    ±5% to 20 ns
    ±3% from 20 ns to 100 ns
    ±2% from 100 ns to 400 ns
    ±1% above 400 ns

    N/A
    RMS noise Full: 1.8 mV, maximum, 1.6 mV, typical Full: 2.4 mV, maximum, 2.2 mV, typical
    Middle: 0.8 mV, maximum, 0.65 mV, typical N/A Middle: 0.8 mV, maximum, 0.65 mV, typical N/A
    Narrow: 0.6 mV, maximum, 0.45 mV, typical 0.8 mV, maximum, 0.65 mV typ. Narrow: 0.6 mV, maximum, 0.45 mV, typical 0.8 mV, maximum, 0.65 mV typ.
    Scale factors (sensitivity) 10 mV/div to 250 mV/div
    Full scale is 8 vertical divisions
    Adjustable in a 10-12.5-15-20-25-30-40-50-60-80-100-125-150-200-250 mV/div sequence.
    Also adjustable in 1% fine increments or better.
    With manual or calculator data entry the increment is 0.1 mV/div.
    DC gain accuracy ±2% of full scale. ±1.5% of full scale, typical
    Position range ±4 divisions from center screen
    DC offset range Adjustable from –1 V to +1 V in 10 mV increments (coarse). Also adjustable in fine increments of 2 mV.
    With manual or calculator data entry the increment is 0.01 mV for offset between –99.9 and 99.9 mV, and 0.1 mV for offset between –999.9 and 999.9 mV.
    Referenced to the center of display graticule
    Offset accuracy ±2 mV ±2% of offset setting (±1 mV ±1% typical)
    Operating input voltage ±800 mV
    Vertical zoom and position
    Channel-to-channel crosstalk (channel isolation) ≥ 50 dB (316:1) for input frequency DC to 1 GHz
    ≥ 40 dB (100:1) for input frequency > 1 GHz to 3 GHz
    ≥ 36 dB (63:1) for input frequency > 3 GHz to ≤ 5 GHz ≥ 36 dB (63:1) for input frequency > 3 GHz to ≤ 16 GHz
    Delay between channels ≤ 10 ps, typical
    Between any two channels, full bandwidth, random sampling
    ADC resolution 12 bits
    Hardware vertical resolution 0.4 mV/LSB without averaging
    Overvoltage protection ±1.4 V (DC + peak AC)
    Input impedance 50 Ω ±1.5 Ω (50 Ω ±1 Ω typical)
    Input match Reflections for 70 ps rise time: 10% or less Reflections for 50 ps rise time: 10% or less.
    Input coupling DC
    Input connectors SMA female
    Internal probe power 6.0 W total maximum with PSU as supplied. N/A 6.0 W total maximum with PSU as supplied. N/A
    Probe power per probe 3.3 V: 100 mA maximum
    12 V: 500 mA maximum to total probe power stated above.
    3.3 V: 100 mA maximum
    12 V: 500 mA maximum to total probe power stated above.
    Attenuation Attenuation factors may be entered to scale the oscilloscope for external attenuators connected to the channel inputs
    Range: 0.0001:1 to 1 000 000:1
    Units: ratio or dB
    Scale: volt, watt, ampere, or unknown

      PicoScope 9404-05 PicoScope 9402-05 PicoScope 9404-16 PicoScope 9402-16
    Horizontal
    Timebase Internal timebase common to all input channels.
    Timebase range Full horizontal scale is 10 divisions
    Real time sampling: 10 ns/div to 1000 s/div
    Random equivalent time sampling:
    50 ps/div to 5 µs/div

    20 ps/div to 5 μs/div
    Roll: 100 ms/div to 1000 s/div
    Segmented: Total number of segments: 2 to 1024. Rearm time between segments: <1 μs (trigger hold-off setting dependent)
    Horizontal zoom and position For all input channels, waveform memories, or functions
    Horizontal factor: From 1 to 2000
    Horizontal position: From 0% to 100% non-zoomed waveform
    Timebase clock accuracy Frequency: 500 MHz
    Initial set tolerance: ±10 ppm @ 25 °C ±3 °C
    Overall frequency stability: ±50 ppm over operating temperature range
    Aging ±7 ppm over 10 years @ 25 °C
    Timebase resolution 1.0 ps 0.4 ps
    Delta time measurement accuracy ±(50 ppm * reading + 0.1% * screen width + 5 ps)
    Pre-trigger delay Record length ÷ current sampling rate (when delay = 0)
    Post-trigger delay 0 to 4.28 s. Coarse increment is one horizontal scale division, fine increment is 0.1 horizontal scale division, manual or calculator increment is 0.01 horizontal scale division.
    Channel-to-channel deskew range ±50 ns range. Coarse increment is 100 ps, fine increment is 10 ps. With manual or calculator data entry the increment is four significant digits or 1 ps.

      PicoScope
    9404-05
    PicoScope
    9402-05
    PicoScope
    9404-16
    PicoScope
    9402-16
    Acquisition
    Sampling modes Real time: Captures all of the sample points used to reconstruct a waveform during a single trigger event
    Random equivalent time: Acquires sample points over several trigger events, requiring the input waveform to be repetitive
    Roll: Acquisition data will be displayed in a rolling fashion starting from the right side of the display and continuing to the left side of the display (while the acquisition is running)
    Maximum sampling rate Real time: 500 MS/s per channel simultaneously
    Random equivalent time:: Up to 1 TS/s or 1 ps trigger placement resolution) Random equivalent time: Up to 2.5 TS/s or 0.4 ps trigger placement resolution
    Record length Real time sampling: From 50 S/ch to 250 kS/ch for one channel, to 125 kS/ch for two channels, to 50 kS/ch for three and four channels
    Random equivalent time sampling: From 500 S/ch to 250 kS/ch for one channel, to 125 kS/ch for two channels, to 50 kS/ch for three and four channels
    Duration at highest real-time sampling rate 0.5 ms for one channel, 0.25 ms for two channels, 0.125 ms for three and four channels
    Acquisition modes Sample (normal): Acquires first sample in decimation interval and displays results without further processing
    Average: Average value of samples in decimation interval. Number of waveforms for average: 2 to 4096.
    Envelope: Envelope of acquired waveforms. Minimum, Maximum or both Minimum and Maximum values acquired over one or more acquisitions. Number of acquisitions is from 2 to 4096 in ×2 sequence and continuously.
    Peak detect: Largest and smallest sample in decimation interval. Minimum pulse width: 1/(sampling rate) or 2 ns @ 50 µs/div or faster for single channel.
    High resolution: Averages all samples taken during an acquisition interval to create a record point. This average results in a higher-resolution, lower-bandwidth waveform. Resolution can be expanded to 12.5 bits or more, up to 16 bits.
    Segmented: Segmented memory optimizes available memory for data streams that have long dead times between activity.
    Number of segments: 2 to 1024
    Dead time between segments: 3 µs
    User can view selected segment, overlaid segments or selected plus overlay.
    Search segments: step through, gated block and binary search. Segments are delta and absolute time stamped.

      PicoScope 9404-05 PicoScope 9402-05 PicoScope 9404-16 PicoScope 9402-16
    Trigger
    Trigger sources Internal from any of four channels. Internal from any of two channels.
    External Direct.
    Internal from any of four channels.
    External Prescaled.
    Internal from any of two channels.
    External Direct.
    External Prescale.
    Trigger mode Freerun: Triggers automatically but not synchronized to the input in absence of trigger event.
    Normal (triggered): Requires trigger event for oscilloscope to trigger.
    Single: SW button that triggers only once on a trigger event. Not suitable for random equivalent-time sampling
    Internal trigger coupling DC
    Internal trigger style Edge: Triggers on a rising and falling edge of any source from DC to 2.5 GHz.
    Divider: The trigger source is divided down four times (/4) before being applied to the trigger system. It has a trigger frequency range up to 5 GHz.
    Clock recovery (optional): This trigger is used when the trigger signal is an NRZ data pattern with any data rate between 6.5 Mb/s and 5 Gb/s Clock recovery (optional): This trigger is used when the trigger signal is an NRZ data pattern with any data rate between 6.5 Mb/s and 8 Gb/s
    Trigger holdoff mode Time or random
    Trigger holdoff range Holdoff by time: Adjustable from 500 ns to 15 s in a 1-2-5-10 sequence or in 4 ns fine increments
    Random: This mode varies the trigger holdoff from one acquisition to another by randomizing the time value between triggers. The randomized time values can be between the values specified in the Min Holdoff and Max Holdoff.
    Bandwidth and sensitivity Low sensitivity: 100 mV p-p DC to 100 MHz. Increasing linearly from 100 mV p-p at 100 MHz to 200 mV p-p at 5 GHz. Pulse width: 100 ps @ 200 mV p-p typical.
    High sensitivity: 30 mV p-p DC to 100 MHz. Increasing linearly from 30 mV p-p at 100 MHz to 70 mV p-p at 5 GHz. Pulse width: 100 ps @ 70 mV p-p.
    Internal trigger level range –1 V to 1 V in 10 mV increments (coarse). Also adjustable in fine increments of 1 mV.
       
    Edge trigger slope Positive: Triggers on rising edge
    Negative: Triggers on falling edge
    Bi-slope: Triggers on both edges of the signal
    RMS internal trigger jitter Combined trigger and interpolator jitter + delay clock stability
    Edge and divided trigger: 2 ps + 0.1 ppm of delay, maximum
    Clock recovery trigger (optional): 2 ps + 1.0% of unit interval + 0.1 ppm delay, maximum

      PicoScope 9404-16 PicoScope 9402-16
    External prescaled trigger
    Coupling 50 Ω, AC coupled, fixed level zero volts
    Bandwidth and sensitivity 200 mV p-p from 1 GHz to 16 GHz (sine wave input)
    RMS jitter 2 ps + 0.1 ppm of delay, maximum. For trigger input slope > 2 V/ns. Combined trigger and interpolator jitter + delay clock stability
    Prescaler ratio Divided by 1 / 2 /4 / 8, programmable
    Maximum safe input voltage ±2 V (DC+peak AC) 3 V p-p
    Input connector SMA female

      PicoScope 9402-05 PicoScope 9402-16
    External direct trigger
    Style Edge: Triggers on a rising and falling edge of any source from DC to 2.5 GHz.
    Divide: Trigger source divided by 4 before input to the trigger system. Max. trigger frequency 5 GHz.
    Clock recovery (optional): 6.5 Mb/s to 5 Gb/s 6.5 Mb/s to 8 Gb/s
    Coupling DC
    Bandwidth
    and
    sensitivity
    Low: 100 mV p-p DC to 100 MHz. Increasing linearly from 100 mV p-p at 100 MHz to 200 mV p-p at 5 GHz. Pulse width: 100 ps @ 200 mV p-p typical.
    High: 30 mV p-p DC to 100 MHz. Increasing linearly from 30 mV p-p at 100 MHz to 70 mV p-p at 5 GHz. Pulse width: 100 ps @ 70 mV p-p.
    Level range –1 V to 1 V.
    10 mV coarse increments.
    1 mV fine increments.
    Slope Slope Rising, falling, bi-slope
    RMS jitter, edge and divided 2 ps + 0.1 ppm of delay, max.
    RMS jitter, clock recovery (optional) 2 ps + 1.0% of unit interval + 0.1 ppm of delay, maximum
    Maximum safe input voltage ±3 V (DC+peak AC)
    Input connector SMA(f)

    Display
    Persistence Off: No persistence
    Variable persistence: Time that each data point is retained on the display. Persistence time can be varied from 100 ms to 20 s.
    Infinite persistence: In this mode, a waveform sample point is displayed forever.
    Variable Gray Scaling: Five levels of a single color that is varied in saturation and luminosity. Refresh time can be varied from 1 s to 200 s.
    Infinite Gray Scaling: In this mode, a waveform sample point is displayed forever in five levels of a single color.
    Variable Color Grading: With Color Grading selected, historical timing information is represented by a temperature or spectral color scheme providing “z-axis” information about rapidly changing waveforms. Refresh time can be varied from 1 to 200 s.
    Infinite Color Grading: In this mode, a waveform sample point is displayed forever by a temperature or spectral color scheme.
    Style Dots: Displays waveforms without persistence, each new waveform record replaces the previously acquired record for a channel.
    Vector: This function draws a straight line through the data points on the display. Not suited to multi-value signals such as a displayed eye diagram.
    Graticule Full Grid, Axes with tick marks, Frame with tick marks, Off (no graticule).
    Format Auto: Automatically places, adds or deletes graticules as you select more or fewer waveforms to display.
    Single XT: All waveforms are superimposed and are eight divisions high.
    Dual YT: With two graticules, all waveforms can be four divisions high, displayed separately or superimposed.
    Quad YT: With four graticules, all waveforms can be two divisions high, displayed separately or superimposed.
    When you select dual or quad screen display, every waveform channel, memory and function can be placed on a specified graticule.
    XY: Displays voltages of two waveforms against each other. The amplitude of the first waveform is plotted on the horizontal X axis and the amplitude of the second waveform is is plotted on the vertical Y axis.
    XY + YT: Displays both XY and YT pictures. The YT format appears on the upper part of the screen, and the XY format on the lower part of the screen. The YT format display area is one screen and any displayed waveforms are superimposed.
    XY + 2YT: Displays both YT and XY pictures. The YT format appears  on the upper part of the screen, and the XY format on the lower part of the screen. The YT format display area is divided into two equal screens.
    Tandem: Displays graticules to the left and to the right.
    Colors You may choose a default color selection, or select your own color set. Different colors are used for displaying selected items: background, channels, functions, waveform memories, FFTs, TDR/TDTs, and histograms.
    Trace annotation The instrument gives you the ability to add an identifying label, bearing your own text, to a waveform display. For each waveform, you can create multiple labels and turn them all on or all off. Also, you can position them on the waveform by dragging or by specifying an exact horizontal position.

    Save/Recall
    Management Store and recall setups, waveforms and user mask files to any drive on your PC. Storage capacity is limited only by disk space.
    File extensions Waveform files:
    .wfm for binary format
    .txt for verbose format (text)
    .txty for Y values formats (text)
    Database files: .wdb
    Setup files: .set
    User mask files: .pcm
    Operating system Microsoft Windows 7, 8 and 10, 32-bit and 64-bit.
    Waveform save/recall Up to four waveforms may be stored into the waveform memories (M1 to M4), and then recalled for display.
    Save to/recall from disk You can save or recall your acquired waveforms to or from any drive on the PC. To save a waveform, use the standard Windows Save as dialog box. From this dialog box you can create subdirectories and waveform files, or overwrite existing waveform files.
    You can load, into one of the Waveform Memories, a file with a waveform you have previously saved and then recall it for display.
    Save/recall setups The instrument can store complete setups in the memory and then recall them.
    Screen image You can copy a screen image into the clipboard with the following formats: Full Screen, Full Window, Client Part, Invert Client Part, Oscilloscope Screen and Oscilloscope Screen.
    Autoscale Pressing the Autoscale key automatically adjusts the vertical channels, the horizontal scale factors, and the trigger level for a display appropriate to the signals applied to the inputs.
    The Autoscale feature requires a repetitive signal with a frequency greater than 100 Hz, duty cycle greater than 0.2%, amplitudes greater than 100 mV p-p. Autoscale is operative only for relatively stable input signals.

    Marker
    Marker type X-Marker: vertical bars (measure time).
    Y-Marker: horizontal bars (measure volts).
    XY-Marker: waveform markers.
    Marker measurements Absolute, Delta, Volt, Time, Frequency, Slope.
    Marker motion Independent: both markers can be adjusted independently.
    Paired: both markers can be adjusted together.
    Ratiometric measurements Provide ratiometric measurements between measured and reference values. These measurements give results in such ratiometric units as %, dB, and degrees.

      PicoScope
    9404-05
    PicoScope
    9402-05
    PicoScope
    9404-16
    PicoScope
    9402-16
    Measure
    Automated measurements Up to ten simultaneous measurements are supported at the same time.
    Automatic parametric 53 automatic measurements available.
    Amplitude measurements Maximum, Minimum, Top, Base, Peak-Peak, Amplitude, Middle, Mean, Cycle Mean, DC RMS, Cycle DC RMS, AC RMS, Cycle AC RMS, Positive Overshoot, Negative Overshoot, Area, Cycle Area.
    Timing measurements Period, Frequency, Positive Width, Negative Width, Rise Time, Fall Time, Positive Duty Cycle, Negative Duty Cycle, Positive Crossing, Negative Crossing, Burst Width, Cycles, Time at Maximum, Time at Minimum, Positive Jitter p-p, Positive Jitter RMS, Negative Jitter p-p, Negative Jitter RMS.
    Inter-signal measurements Delay (8 options), Phase Deg, Phase Rad, Phase %, Gain, Gain dB.
    FFT measurements FFT Magnitude, FFT Delta Magnitude, THD, FFT Frequency, FFT Delta Frequency.
    Measurement statistics Displays current, minimum, maximum, mean and standard deviation on any displayed waveform measurements.
    Method of top-base definition Histogram, Min/Max, or User-Defined (in absolute voltage).
    Thresholds Upper, middle and lower horizontal bars settable in percentage, voltage or divisions. Standard thresholds are 10–50–90% or 20–50–80%.
    Margins Any region of the waveform may be isolated for measurement using left and right margins (vertical bars).
    Measurement mode Repetitive or Single-shot.
    Counter

    Built-in frequency counter.

    Direct trigger: 1 µHz to 2.5 GHz
    Resolution: ≥100 Hz ≤1 ppm, <100 Hz ≤5 ppm ±0.25 µHz
    Read rate:1.5 s or 31 cycles (whichever is greater)

    Source: Internal from any of four channels Internal from any of two channels,
    External Direct
    Internal from any of four channels,
    External Prescaled
    Internal from any of two channels,
    External Direct, External Prescaled
    Resolution: 7 digits
    Maximum frequency: Internal trigger: 5 GHz. External prescaled trigger (16 GHz models only): 16 GHz.
    Measurement: Frequency, period
    Time reference: Internal 250 MHz reference clock

    Mathematics
    Waveform math Up to four math waveforms can be defined and displayed using math functions F1 to F4
    Categories and math operators Arithmetic: Add, Subtract, Multiply, Divide, Ceil, Floor, Fix, Round, Absolute, Invert, Common, Rescale.
    Algebra: Exponentiation (e), Exponentiation (10), Exponentiation (a), Logarithm (e), Logarithm (10), Logarithm (a), Differentiate, Integrate, Square, Square Root, Cube, Power (a), Inverse, Square Root of the Sum.
    Trigonometry: Sine, Cosine, Tangent, Cotangent, ArcSine, Arc Cosine, ArcTangent, Arc Cotangent, Hyperbolic Sine, Hyperbolic Cosine, Hyperbolic Tangent, Hyperbolic Cotangent.
    FFT: Complex FFT, FFT Magnitude, FFT Phase, FFT Real part, FFT Imaginary part, Complex Inverse FFT, FFT Group Delay. Bit operator: AND, NAND, OR, NOR, XOR, XNOR, NOT.
    Miscellaneous: Autocorrelation, Correlation, Convolution, Track, Trend, Linear Interpolation, Sin(x)/x Interpolation, Smoothing.
    Formula editor: Build math waveforms using the Formula Editor control window.
    Operands Any channel, waveform memory, math function, spectrum, or constant can be selected as a source for one of two operands.
    FFT FFT frequency span: Frequency Span = Sample Rate / 2 = Record Length / (2 × Time base Range) FFT frequency resolution: Frequency Resolution = Sample Rate / Record Length
    FFT windows: The built-in filters (Rectangular, Hamming, Hann, Flattop, Blackman–Harris and Kaiser–Bessel) allow optimization of frequency resolution, transients, and amplitude accuracy.
    FFT measurements: Marker measurements can be made on frequency, delta frequency, magnitude, and delta magnitude. Marker measurements can be made on frequency, delta frequency, magnitude, and delta magnitude.
    Automated FFT Measurements include: FFT Magnitude, FFT Delta Magnitude, THD, FFT Frequency, and FFT Delta Frequency.

    Histogram
    Histogram axis Vertical, Horizontal or Off.
    Both vertical and horizontal histograms, with periodically updated measurements, allow statistical distributions to be analyzed over any region of the signal.
    Histogram measurement set Scale, Offset, Hits in Box, Waveforms, Peak Hits, Pk-Pk, Median, Mean, Standard Deviation, Mean ±1 Std Dev, Mean ±2 Std Dev, Mean ±3 Std Dev, Min, Max-Max, Max.
    Histogram window The histogram window determines which part of the database is used to plot the histogram. You can set the size of the histogram window to be any size that you want within the horizontal and vertical scaling limits of the scope.

    Eye diagram
    Eye diagram The PicoScope 9400 can automatically characterize an NRZ and RZ eye pattern. Measurements are based upon statistical analysis of the waveform.
    NRZ measurement set X: Area, Bit Rate, Bit Time, Crossing Time, Cycle Area, Duty Cycle Distortion (%, s), Eye Width (%, s), Fall Time, Frequency, Jitter (p-p, RMS), Period, Rise Time
    Y: AC RMS, Crossing %, Crossing Level, Eye Amplitude, Eye Height, Eye Height dB, Max, Mean, Mid, Min, Negative Overshoot, Noise p-p (One, Zero), Noise RMS (One, Zero), One Level, Peak-Peak, Positive Overshoot, RMS, Signal-to-Noise Ratio, Signal- to-Noise Ratio dB, Zero Level.
    RZ measurement set X: Area, Bit Rate, Bit Time, Cycle Area, Eye Width (%, s), Fall Time, Jitter P-p (Fall, Rise), Jitter RMS (Fall, Rise), Negative Crossing, Positive Crossing, Positive Duty Cycle, Pulse Symmetry, Pulse Width, Rise Time
    Y: AC RMS, Contrast Ratio (dB, %, ratio), Eye Amplitude, Eye High, Eye High dB, Eye Opening Factor, Max, Mean, Mid, Min, Noise P-p (One, Zero), Noise RMS (One, Zero), One Level, Peak-Peak, RMS, Signal-to-Noise, Zero Level.

      PicoScope 9402-05
    PicoScope 9404-05
    PicoScope 9402-16
    PicoScope 9404-16
    Mask test
    Mask test Acquired signals are tested for fit outside areas defined by up to eight polygons. Any samples that fall within the polygon boundaries result in test failures. Masks can be loaded from disk, or created automatically or manually.
    Mask creation Create the following masks: Standard predefined Mask, Automask, Mask saved on disk, Create new mask, Edit any mask.
    Standard masks Standard predefined optical or standard electrical masks can be created.
    SONET/SDH: OC1/STMO (51.84 Mb/s) to FEC 2666 (2.6666 Gb/s)
    Fibre Channel: FC133 Electrical (132.8 Mb/s) to FC2125E Abs Gamma Tx.mask (2.125 Gb/s) Ethernet: 100BASE-BX10 (125 Mb/s) to 3.125 Gb/s 10GBase-CX4 Absolute TP2 (3.125 Gb/s) Infiniband: 2.5G InfiniBand Cable mask (2.5 Gb/s) to 2.5G InfiniBand Receiver mask (2.5 Gb/s) InfiniBand (2.5 Gb/s)
    XAUI: 3.125 Gb/s XAUI Far End (3.125 Gb/s) to XAUI-E Near (3.125 Gb/s)
    ITU G.703: DS1, 100 Ω twisted pair (1.544 Mb/s) to 155 Mb 1 Inv, 75 Ω coax (155.520 Mb/s) ANSI T1/102: DS1, 100 Ω twisted pair, (1.544 Mb/s) to STS3, 75 Ω coax, (155.520 Mb/s)
    RapidIO: RapidIO Serial Level 1, 1.25G Rx (1.25 Gb/s) to RapidIO Serial Level 1, 3.125G Tx SR (3.125 Gb/s)
    PCI Express: R1.0a 2.5G Add-in Card Transmitter Non-Transition bit mask (2.5 Gb/s) to R1.1 2.5G Transmitter Transition bit mask (2.5 Gb/s) Serial ATA: Ext Length, 1.5G 250 Cycle, Rx Mask (1.5 Gb/s) to Gen1m, 3.0G 5 Cycle, Tx Mask (3 Gb/s)
    Additional masks   Fibre Channel: FC4250 Optical PI Rev13 (4.25 Gb/s) to FC4250E Abs Gamma Tx.mask (4.25 Gb/s)
    Infiniband: 5.0G driver test point 1 (5 Gb/s), 5.0G driver test point 6 (5 Gb/s), 5.0G transmitter pins (5 Gb/s)
    PCI Express: R2.0 5.0G Add-in Card 35 dB Transmitter Non-Transition bit mask (5 Gb/s) to R2.1 5.0G Transmitter Transition bit mask (5 Gb/s)
    Mask margin Available for industry-standard mask testing
    Automask creation Masks are created automatically for single-valued voltage signals. Automask specifies both delta X and delta Y tolerances. The failure actions are identical to those of limit testing.
    Data collected during test Total number of waveforms examined, number of failed samples, number of hits within each polygon boundary

    Calibrator output (PicoScope 9404 models only)
    Calibrator output mode DC, 1 kHz square, meander with frequency from 15.266 Hz to 500 kHz.
    Output DC level Adjustable from –1 V to +1 V into 50 Ω. Coarse increment: 50 mV, fine increment: 1 mV.
    Output DC level accuracy ±1 mV ±0.5% of output DC level
    Output impedance 50 Ω nominal
    Rise/fall time 150 ns, typical
    Output connectors SMA female

    Trigger output (PicoScope 9404 models only)
    Timing Positive transition equivalent to acquisition trigger point. Negative transition after user holdoff.
    Low level (–0.2 ±0.1) V. Measured into 50 Ω.
    Amplitude (900 ±200) mV. Measured into 50 Ω.
    Rise time 10% to 90%: ≤ 0.45 ns
    20% to 80%: ≤ 0.3 ns
    RMS jitter 2 ps or less
    Output delay 4 ±1 ns
    Output coupling DC coupled
    Output connectors SMA female

      PicoScope 9402-05
    PicoScope 9404-05
    PicoScope 9402-16
    PicoScope 9404-16
    Clock recovery trigger - recovered data output (optional)
    Data rate 6.5 Mb/s to 5 Gb/s 6.5 Mb/s to 8 Gb/s
    Eye amplitude 250 mV p-p, typical
    Eye rise/fall time 20%–80%: 75 ps, typical. Measured at PicoScope 9404-05 20%–80%: 50 ps, typical. Measured at PicoScope 9404-16
    RMS jitter 2 ps +1% of unit interval, typical
    Output coupling AC-coupled
    Output connections SMA female

      PicoScope 9402-05
    PicoScope 9404-05
    PicoScope 9402-16
    PicoScope 9404-16
    Clock recovery trigger - recovered clock output (optional)
    Output frequency Full rate clock output, 3.25 MHz to 2.5 GHz Full rate clock output, 3.25 MHz to 4 GHz
    Output amplitude 250 mV p-p, typical
    Output coupling AC-coupled
    Output connectors SMA female

      PicoScope
    9404-05
    PicoScope
    9402-05
    PicoScope
    9404-16
    PicoScope
    9402-16
    Power requirement
    Power supply voltage +12 V ± 5%
    Power supply current 2.6 A max. 3.3 A including active accessory loads 1.8 A maximum 2.7 A max. 3.3 A inclusive of active accessory loads 1.8 A maximum
    Protection Auto shutdown on excess or reverse voltage
    AC-DC adaptor Universal adaptor supplied

    PC connection and software
      PicoScope 9402 models PicoScope 9404 models
    PC connection USB 2.0 (high speed). Compatible with USB 3.0.
      Ethernet LAN.
    PC operating system Windows 7, 8 or 10 (32-bit or 64-bit version)

    Physical characteristics
      PicoScope 9404 models PicoScope 9402 models
    Dimensions 245 x 60 x 232 mm (W x H x D) 160 × 55 × 220 mm (W × H × D)
    Net weight 1.4 kg 800 g

    Environmental conditions
    Temperature Operating, normal operation: +5 °C to +40 °C
    Operating, for quoted accuracy: +15 °C to +25 °C
    Storage: –20 °C to +50 °C
    Humidity Operating: Up to 85 %RH (non-condensing) at +25 °C.
    Storage: Up to 95 %RH (non-condensing).
    Altitude Up to 2000 m
    Pollution EN 61010 Pollution Degree 2

    Compliance
    Compliance CFR-47 FCC (EMC), EN61326-1:2013 (EMC) and EN61010-1:2010 (LVD)

    Warranty
    Warranty -

    악세사리